

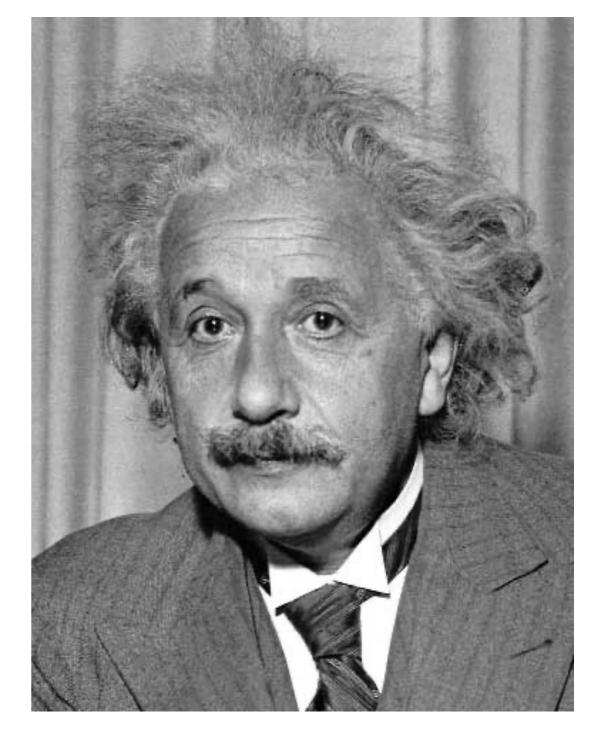
Perceptual Loss, GANs (part I) Jun-Yan Zhu

16-726 Learning-based Image Synthesis, Spring 2023

HW1 (hints)

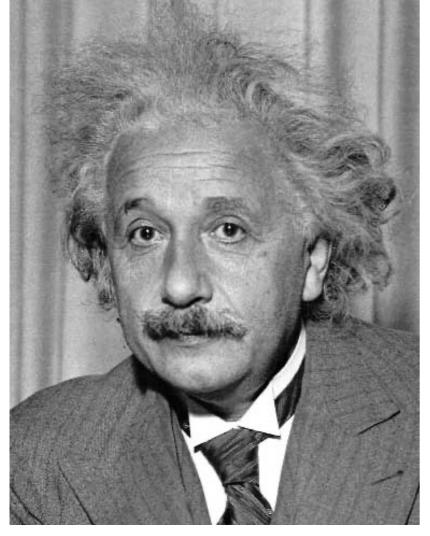
Template matching

- Goal: find in image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized Cross Correlation

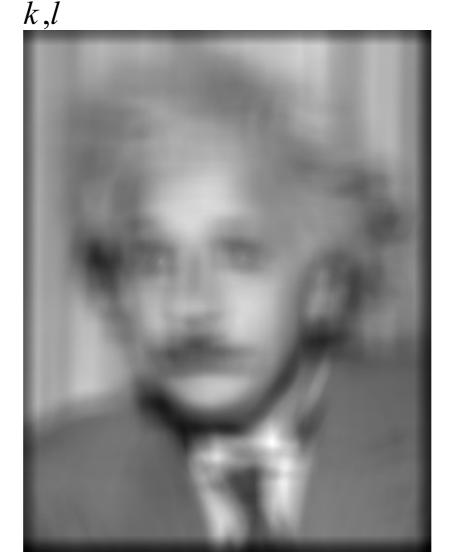


- Goal: find mage
- Method 0: filter the image with eye patch

$$h[m,n] = \sum g[k,l] f[m+k,n+l]$$



Input Filtere



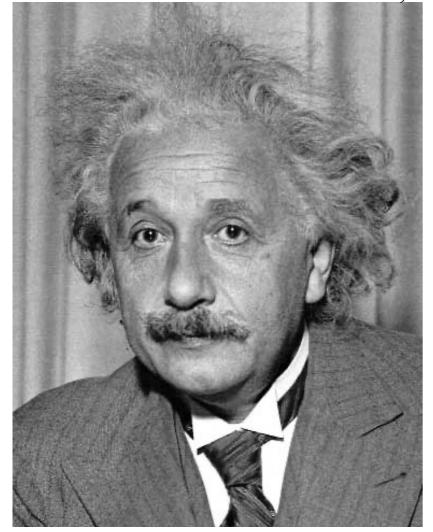
Filtered Image

f = image g = filter

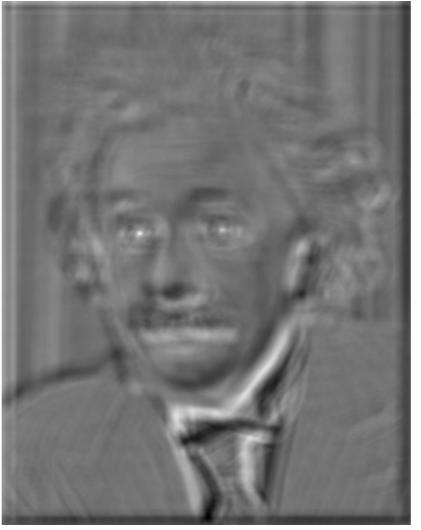
What went wrong?

- Goal: find in image
- Method 1: filter the image with zero-mean eye

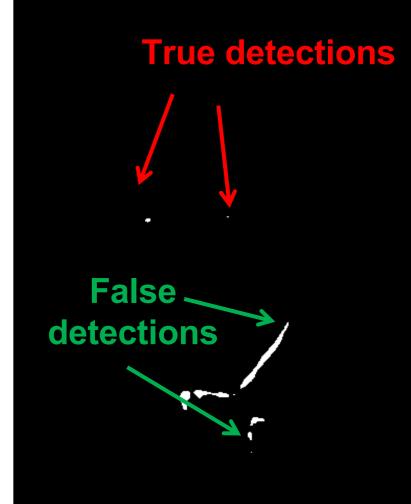
$$h[m,n] = \sum_{k,l} (f[k,l] - \bar{f}) \underbrace{(g[m+k,n+l])}_{\text{mean of f}} \qquad \text{f = image}$$



Input



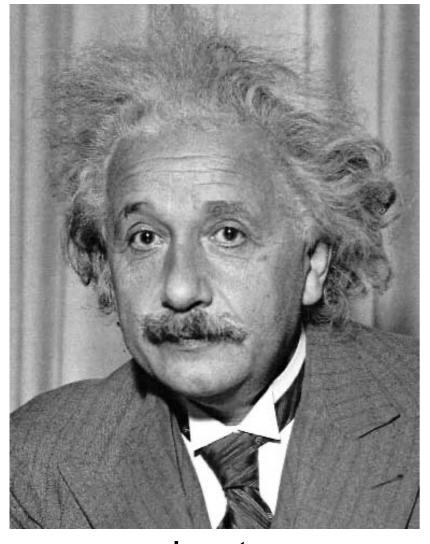
Filtered Image (scaled)



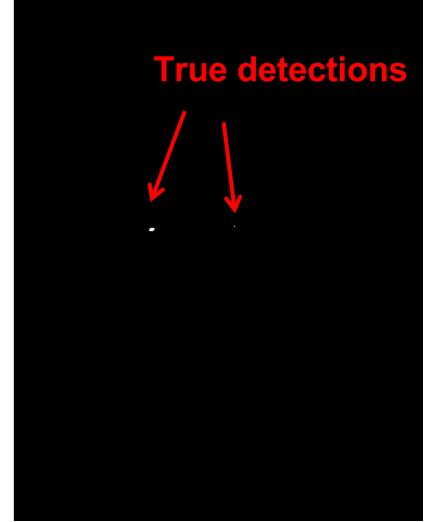
Thresholded Image

- Goal: find in image
- Method 2: SSD (Sum Square Difference)

$$h[m,n] = \sum_{l=1}^{n} (g[k,l] - f[m+k,n+l])^2$$
 f = image g = filter



1- sqrt(SSD)



Thresholded Image

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$
 f = image g = filter

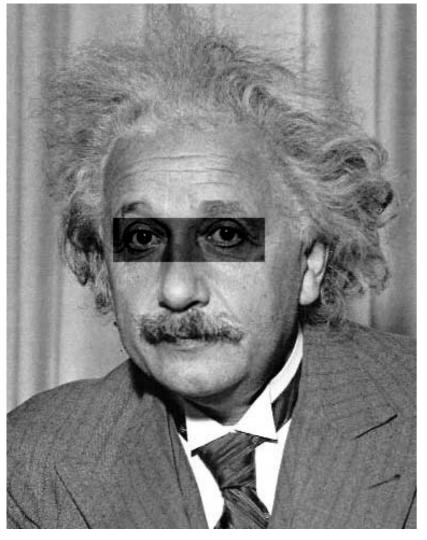
 Can SSD be implemented with linear filters?

• Goal: find mage

What's the potential downside of SSD?

Method 2: SSD (Sum Square Difference)

$$h[m,n] = \sum_{l=1}^{\infty} (g[k,l] - f[m+k,n+l])^2$$
 f = image g = filter



Input

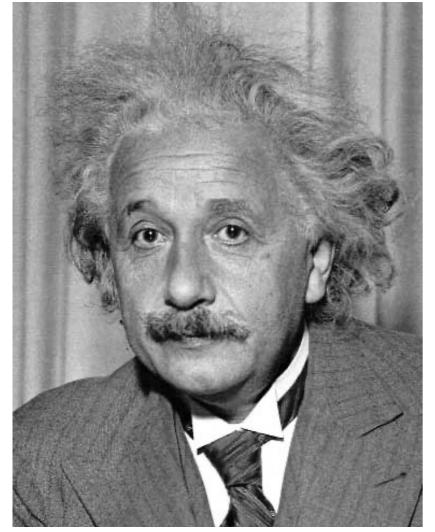
1- sgrt(SSD)

- Goal: find mage
- f = image

 Method 2: Normalized Cross-Correlation g = filter

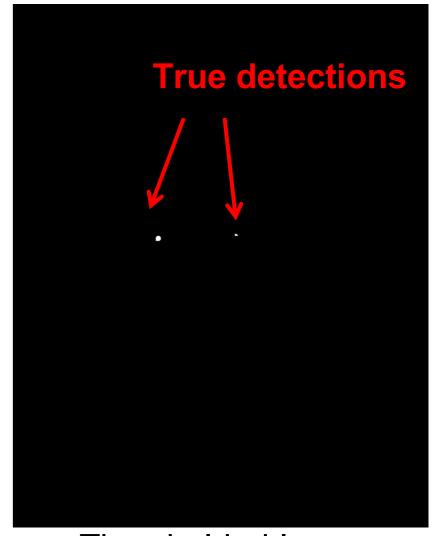
$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \overline{g})(f[m+k,n+l] - \overline{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

- Goal: find mage
- Method 2: Normalized Cross-Correlation



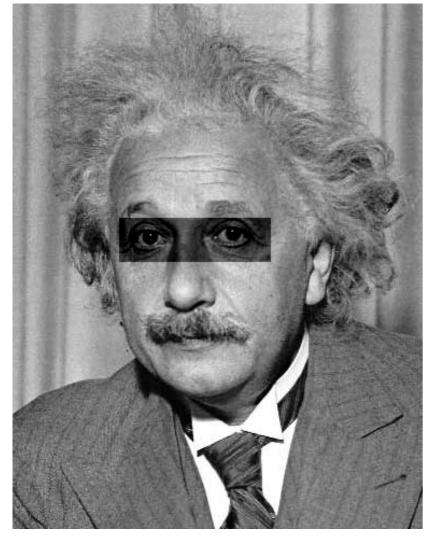
Input

Normalized_®X-Correlation



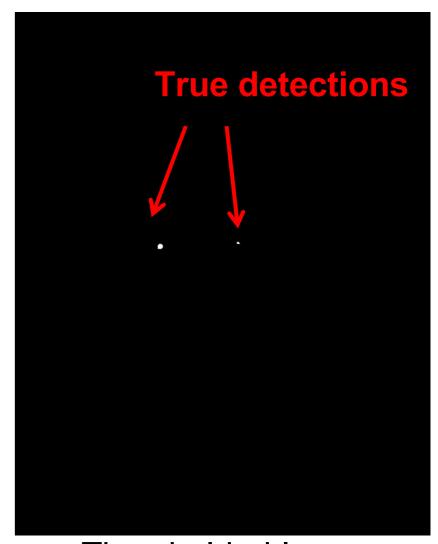
Thresholded Image

- Goal: find mage
- Method 2: Normalized Cross-Correlation



Input

Normalized X-Correlation



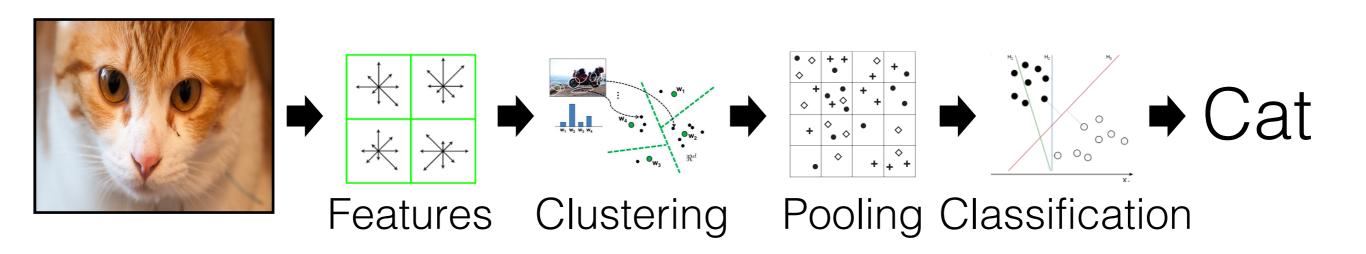
Thresholded Image

Q: What is the best method to use?

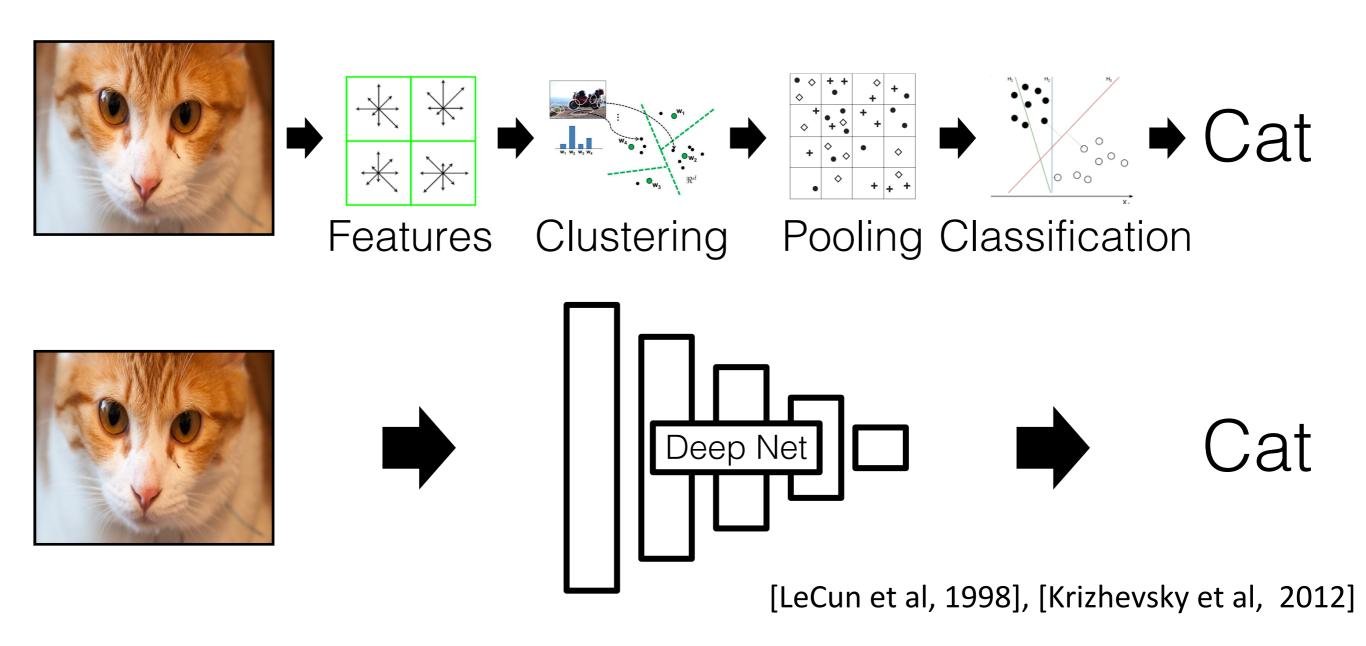
- Answer: Depends
- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast

Review (CNN for Image Synthesis)

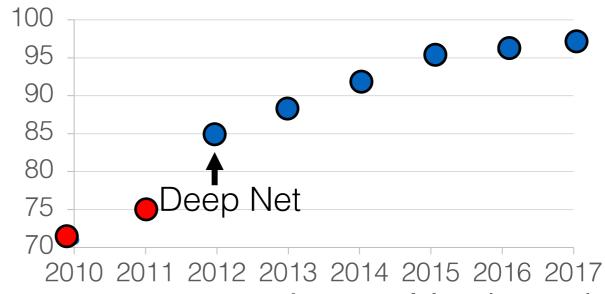
Computer Vision before 2012



Computer Vision Now

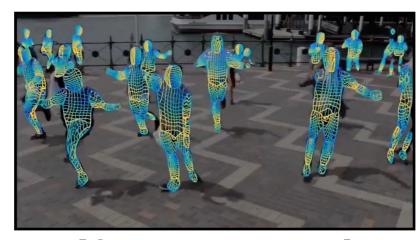


Deep Learning for Computer Vision



Top 5 accuracy on ImageNet benchmark

Object detection



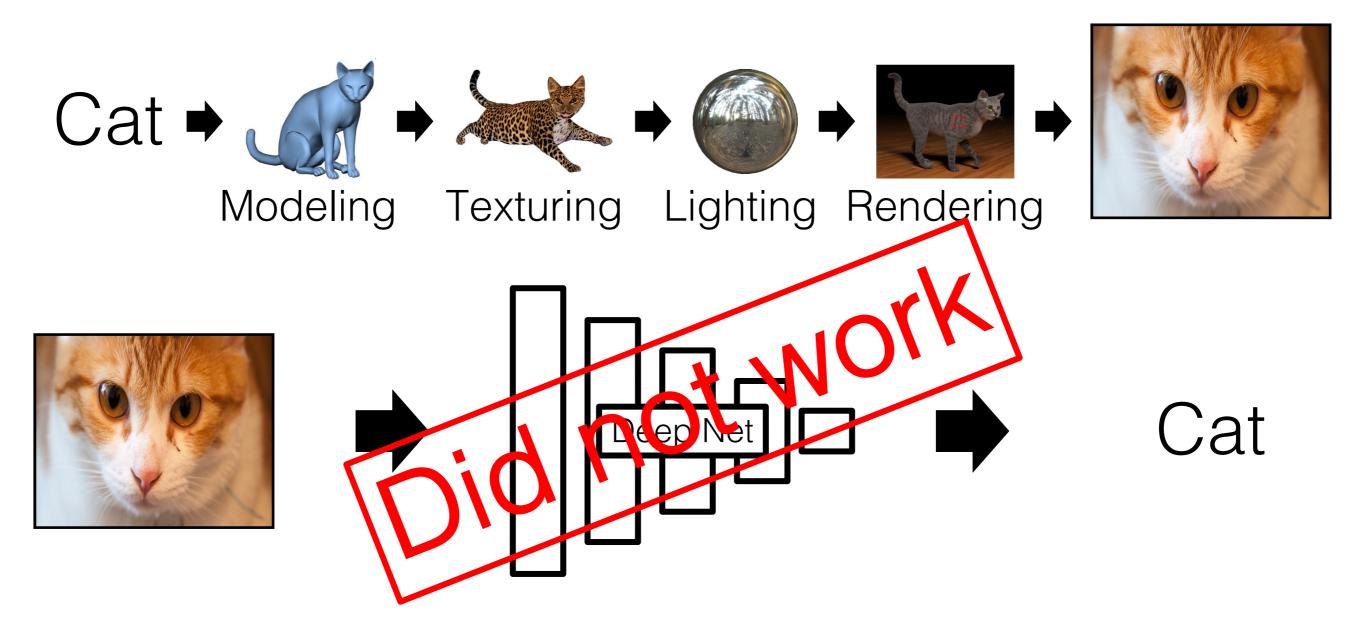
[Güler et al., 2018]

Human understanding

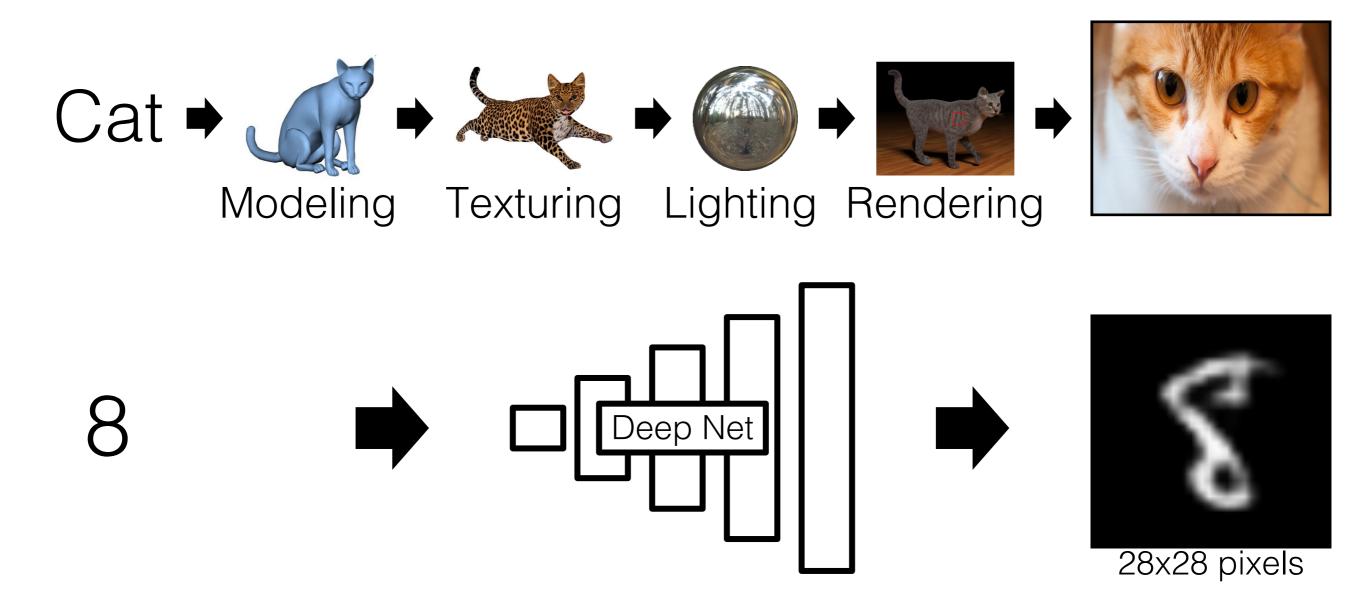
[Zhao et al., 2017] **Autonomous driving**

Can Deep Learning Help Graphics?

Can Deep Learning Help Graphics?

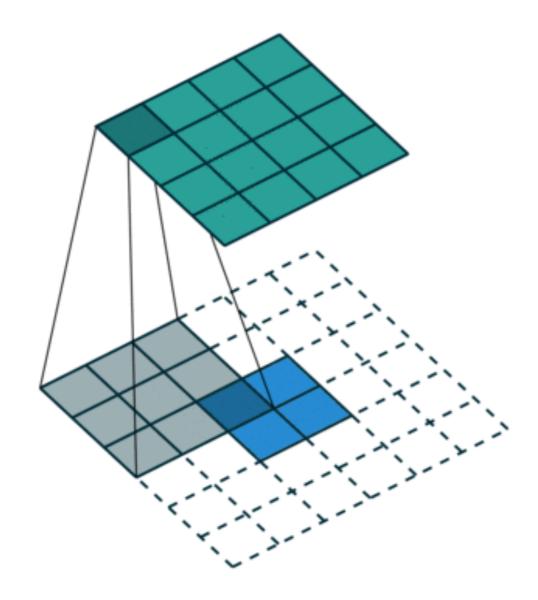


Generating images is hard!

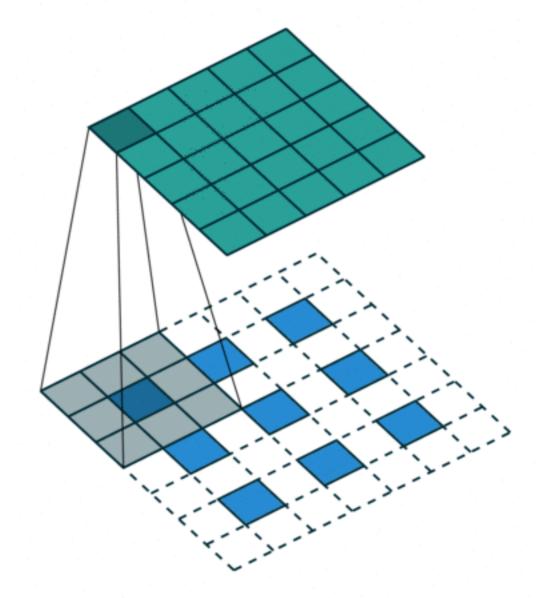


Better Architectures

Fractionally-strided Convolution

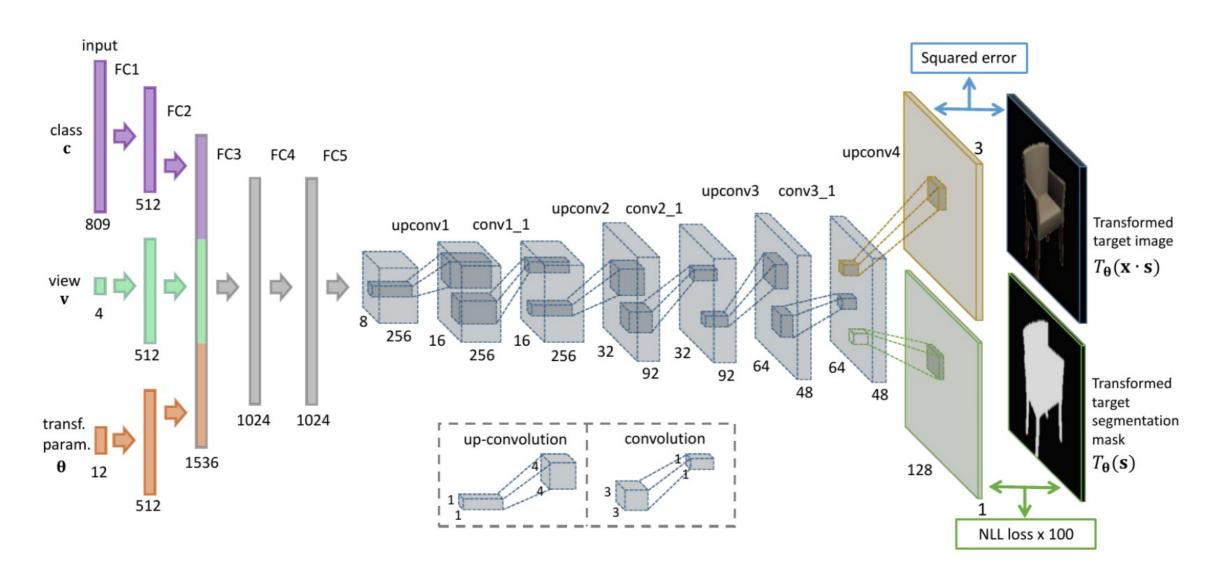


Regular conv



Fractiaionally-strided conv

Generating chairs conditional on chair ID, viewpoint, and transformation parameters



Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017 (CVPR 2015)

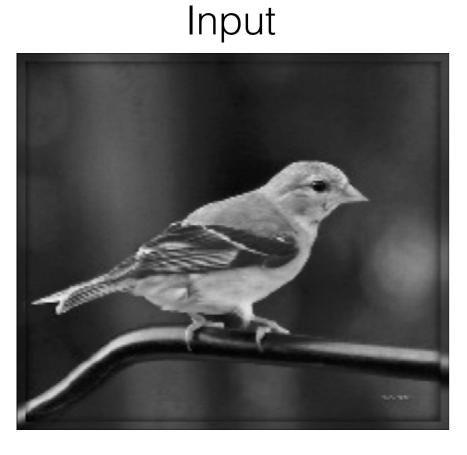
Interpolation between Two Chairs



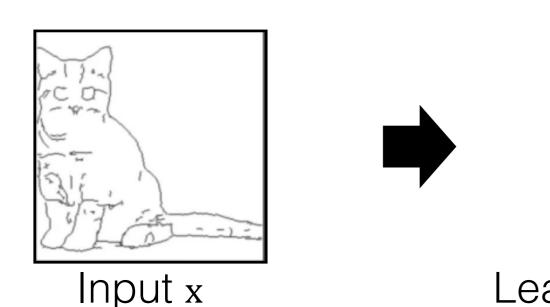
Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017₃(CVPR 2015)

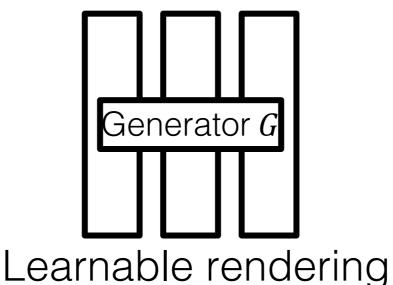
Better Loss Functions

Simple L2 regression doesn't work ®



Loss functions for Image Synthesis



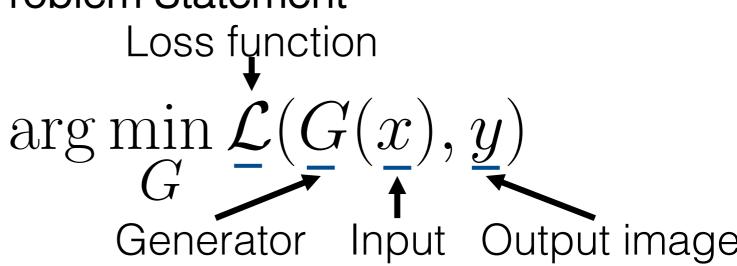


Output Image G(x)

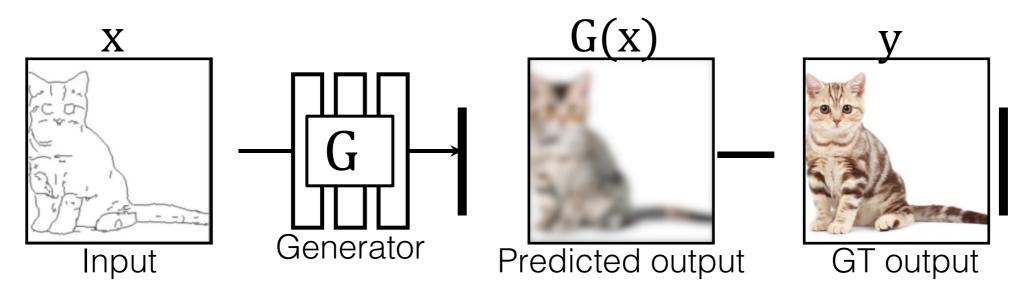
What is a good objective \mathcal{L} ?

- Capture realism
- Calculate image distance
- Adapt to new tasks/data.

Problem Statement



Designing Loss Functions

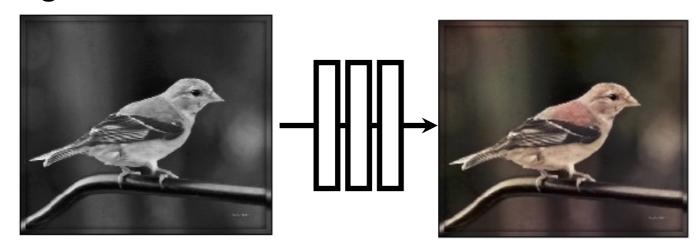


L2 regression

$$\arg\min_{G} \mathbb{E}_{(x,y)}[||G(x) - y||]$$

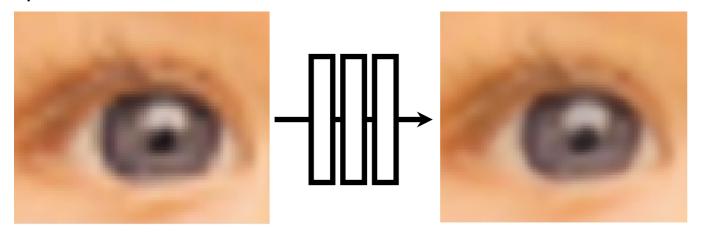
Designing Loss Functions

Image colorization



L2 regression

Super-resolution

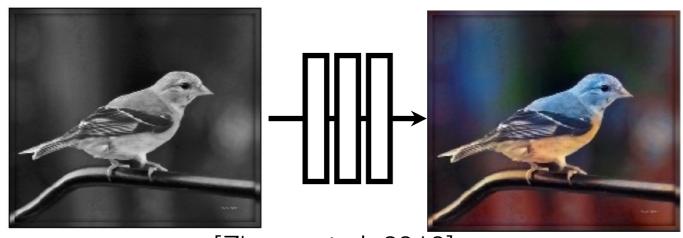


L2 regression

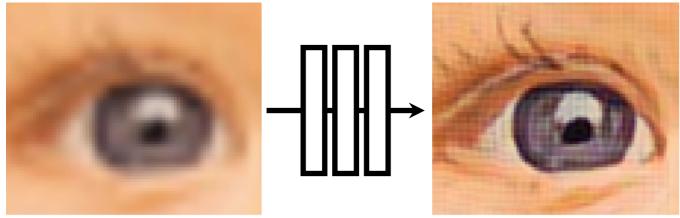
Slide credit: Phillip Isola

Designing Loss Functions

Image colorization



[Zhang et al. 2016] Super-resolution



[Gatys et al., 2016], [Johnson et al. 2016] [Dosovitskiy and Brox. 2016]

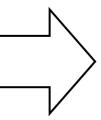
Classification Loss:
Cross entropy objective,
with colorfulness term

Feature/Perceptual loss
Deep feature matching
objective

Slide credit: Phillip Isola

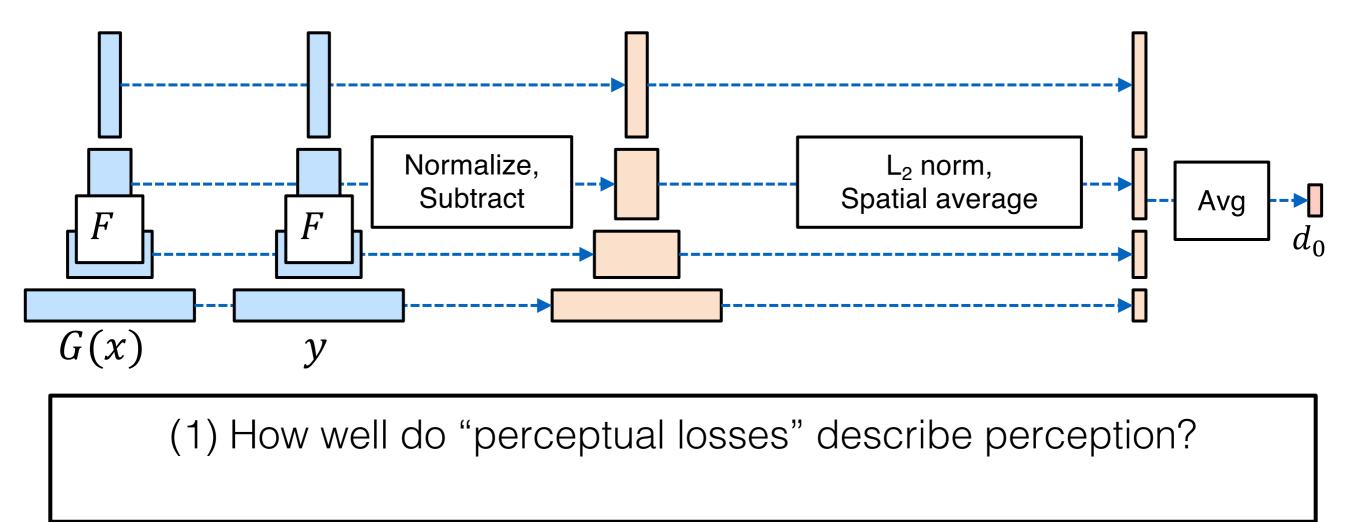
"Perceptual Loss"

Gatys et al. In CVPR, 2016. Johnson et al. In ECCV, 2016. Dosovitskiy and Brox. In NIPS, 2016.



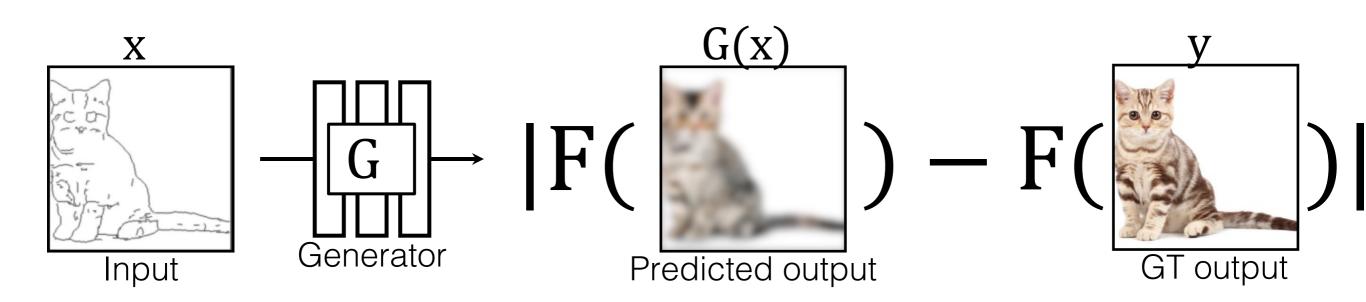
Chen and Koltun. In ICCV, 2017.

CNNs as a Perceptual Metric



c.f. Gatys et al. CVPR 2016. Johnson et al. ECCV 2016. Dosovitskiy and Brox. NIPS 2016.

CNNs as a Perceptual Metric



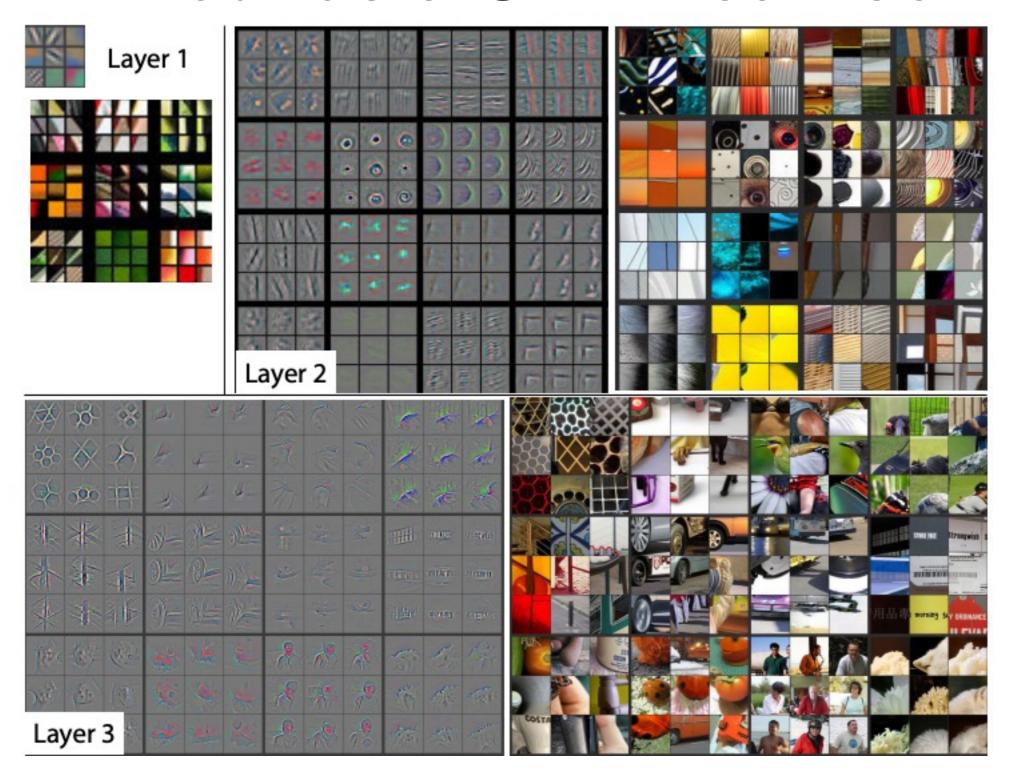
F is a deep network (e.g., ImageNet classifier)

Perceptual Loss

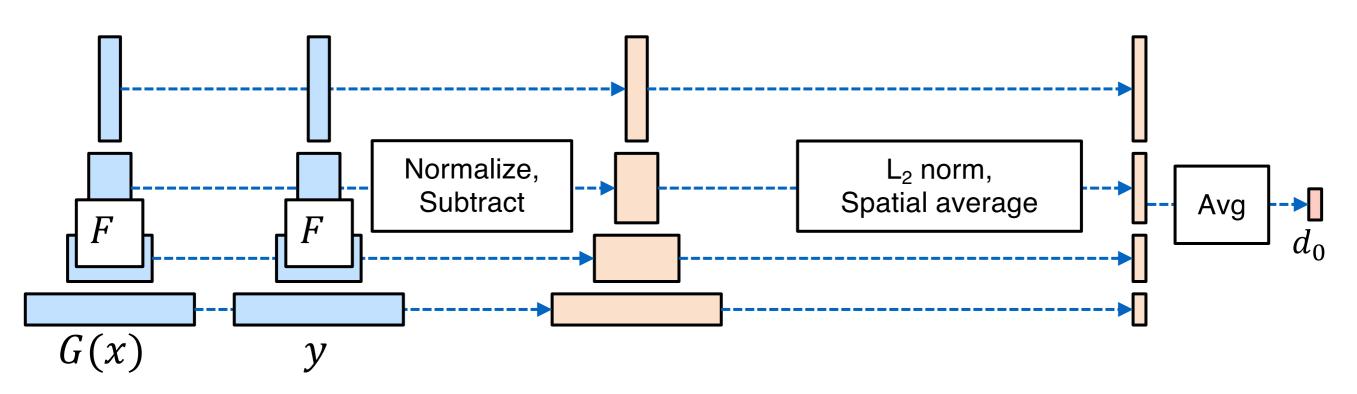
$$\arg\min_{G} \mathbb{E}_{(x,y)} \sum_{i=1}^{N} \overset{\text{weight}}{\lambda_i} \frac{1}{M_i} ||F^{(i)}(G(x)) - F^{(i)}(y))||_2^2$$

The number of elements in the (i)-th layer

What has a CNN Learned?



CNNs as a Perceptual Metric



Perceptual Loss

$$\arg\min_{G} \mathbb{E}_{(x,y)} \sum_{i=1}^{N} \overset{\text{weight}}{\lambda_i} \frac{1}{M_i} ||F^{(i)\text{-th layer}}(G(x)) - F^{(i)}(y))||_2^2$$

The number of elements in the (i)-th layer

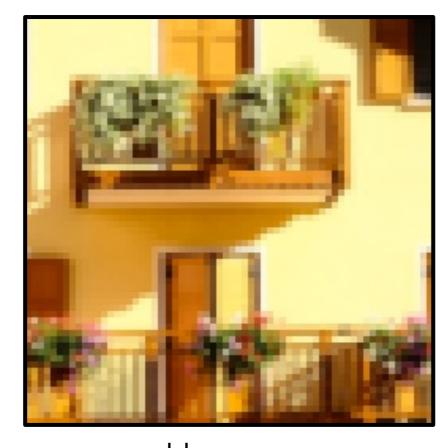
Slide credit: Richard Zhang

How Different are these Patches?

Zhang, Isola, Efros, Shechtman, Wang. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR, 2018.

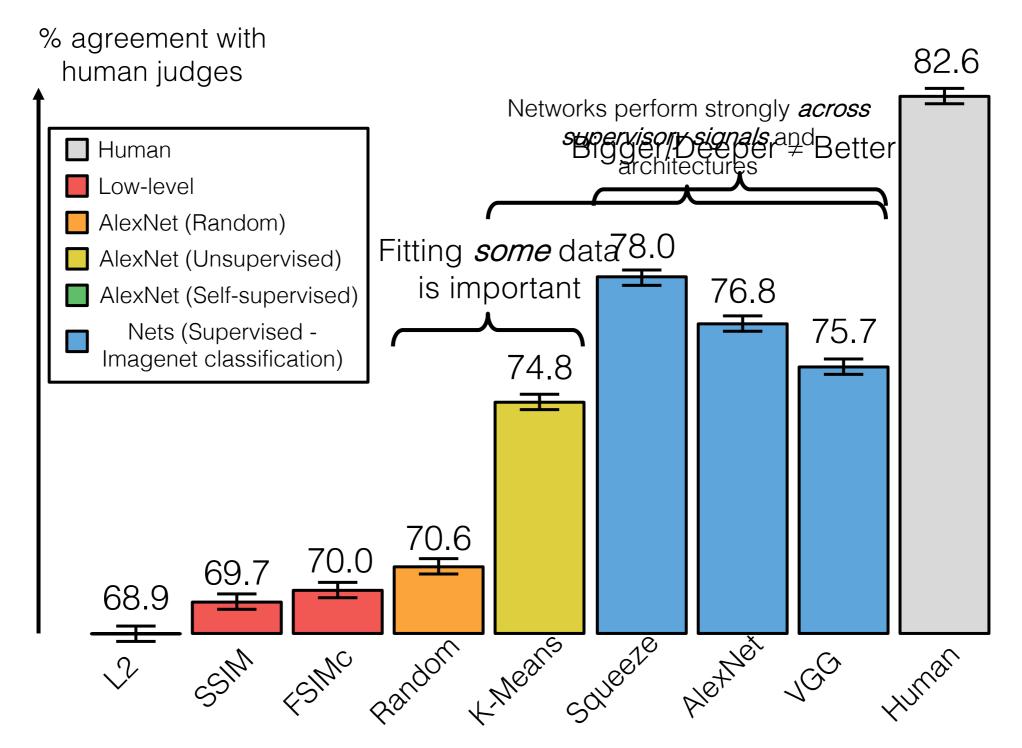
Slide credit: Richard Zhang

Which patch is more similar to the middle?



Humans
L2/PSNR
SSIM/FSIMc
Deep Networks?

< Type 2 >

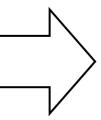


VGG ("perceptual loss")
correlates well

Slide credit: Richard Zhang

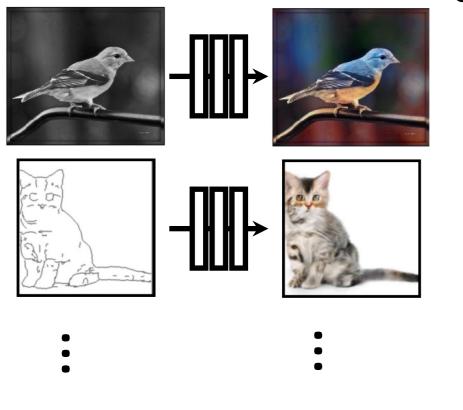
"Perceptual Loss"

Gatys et al. In CVPR, 2016. Johnson et al. In ECCV, 2016. Dosovitskiy and Brox. In NIPS, 2016.



Chen and Koltun. In ICCV, 2017.

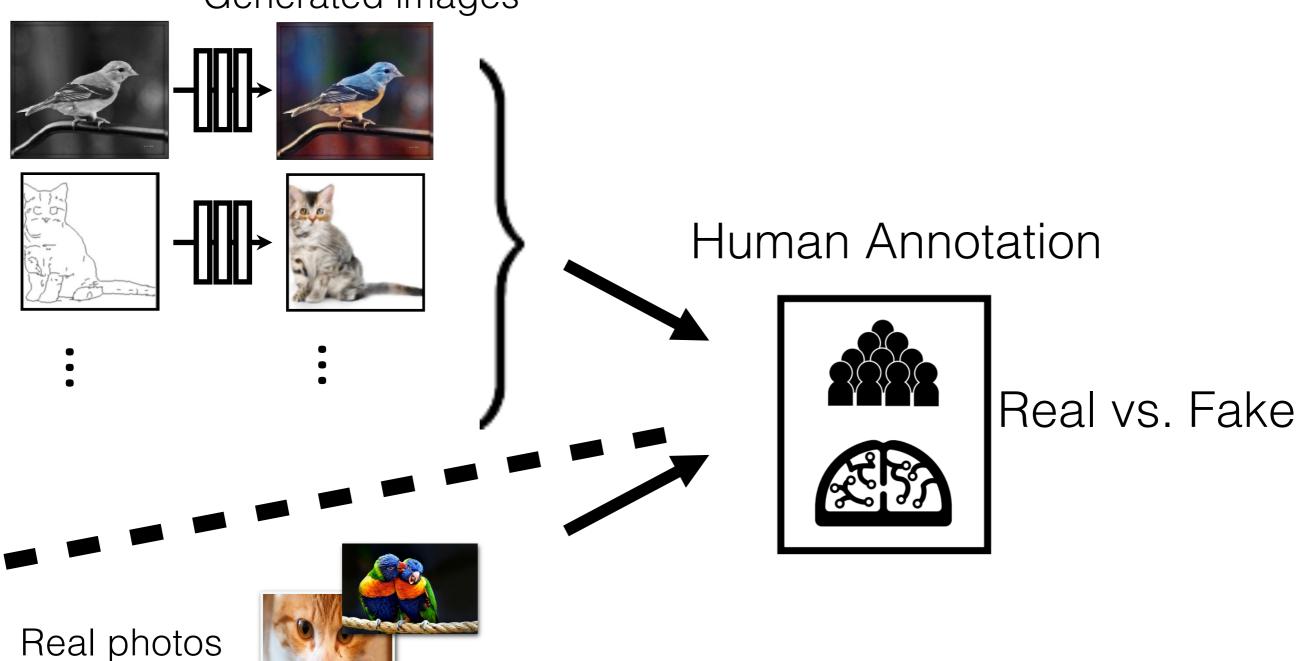
Generated images



Universal loss?

Learning with Human Perception

Generated images



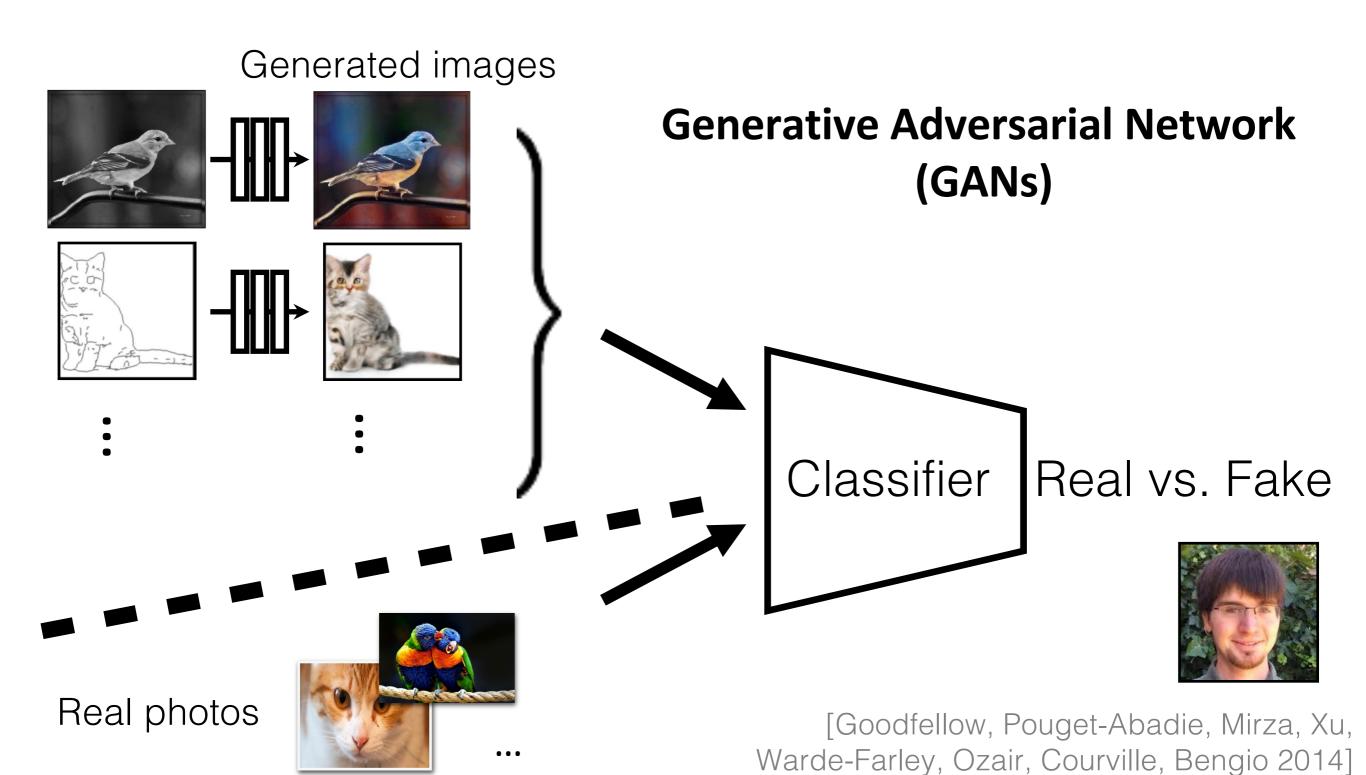
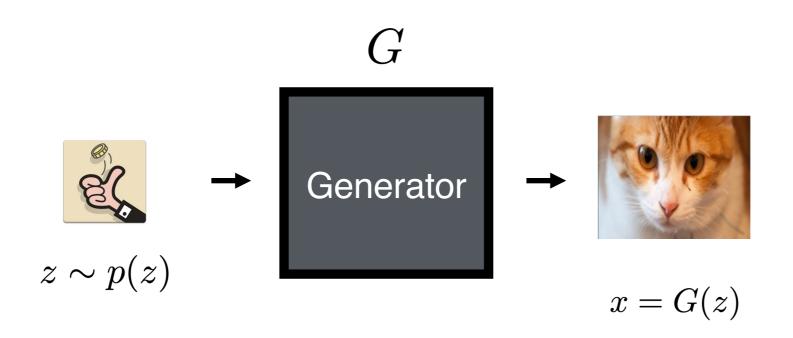
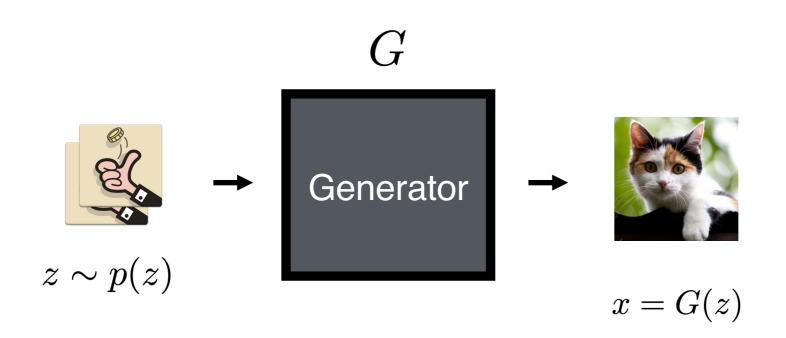


Image synthesis from "noise"



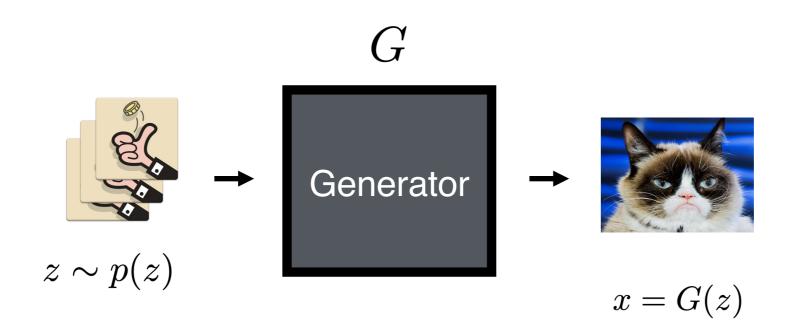
$$G: \mathcal{Z} \to \mathcal{X}$$
$$z \sim p(z)$$
$$x = G(z)$$

Image synthesis from "noise"

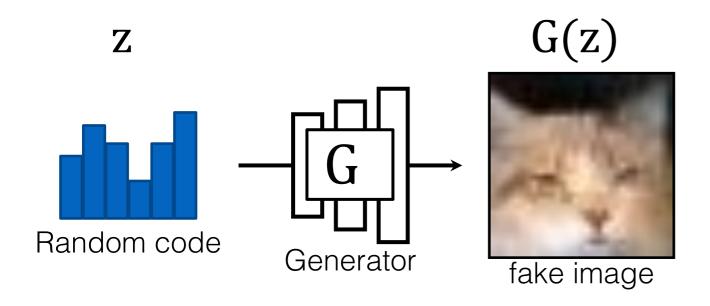


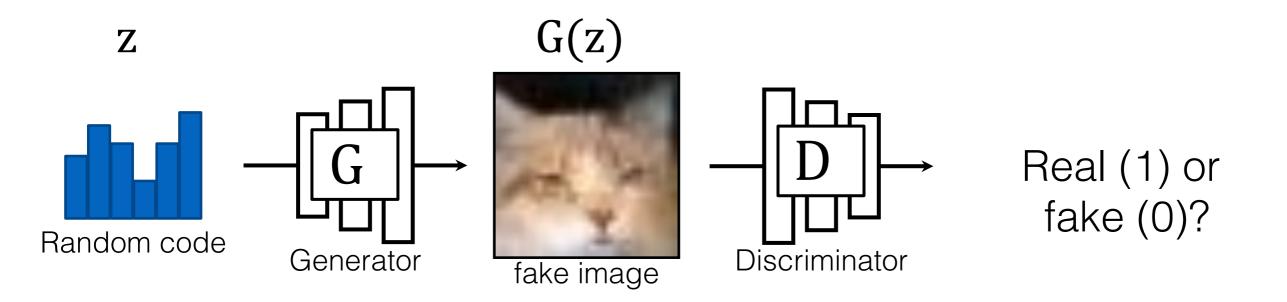
$$G: \mathcal{Z} \to \mathcal{X}$$
$$z \sim p(z)$$
$$x = G(z)$$

Image synthesis from "noise"



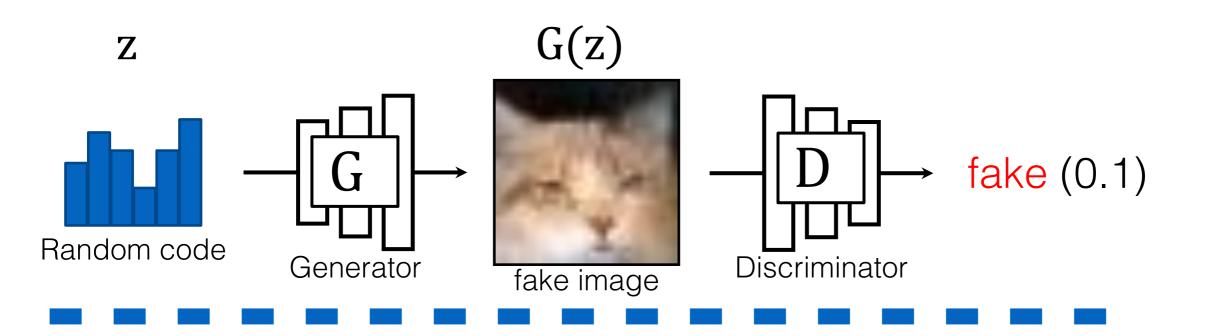
$$G: \mathcal{Z} \to \mathcal{X}$$
$$z \sim p(z)$$
$$x = G(z)$$



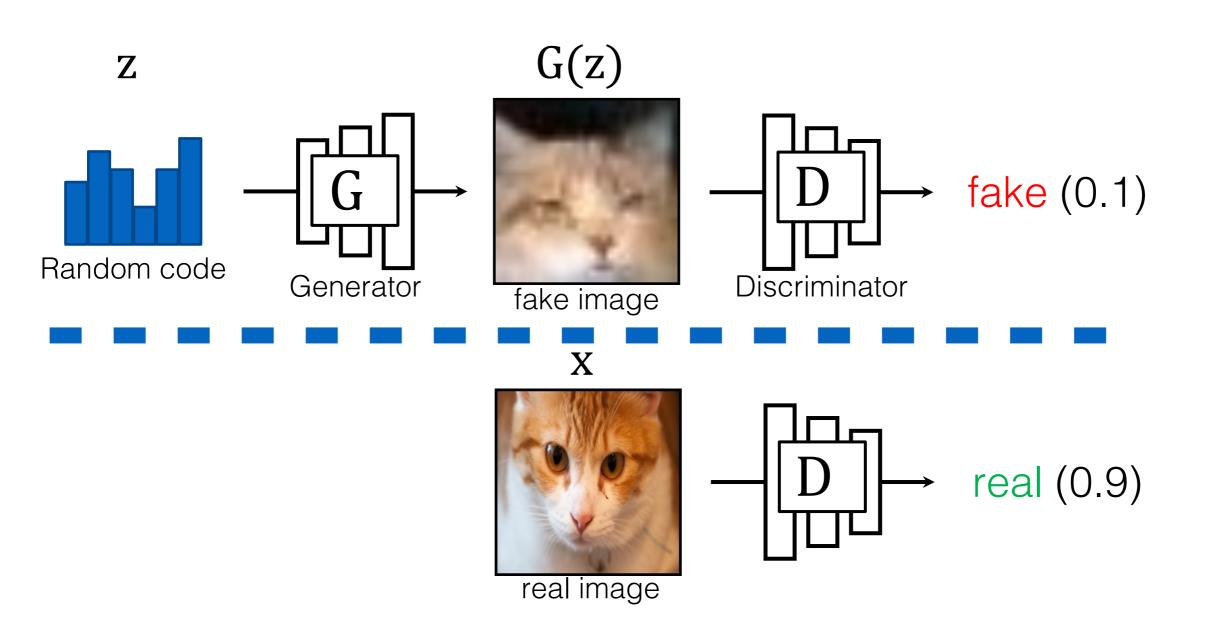


A two-player game:

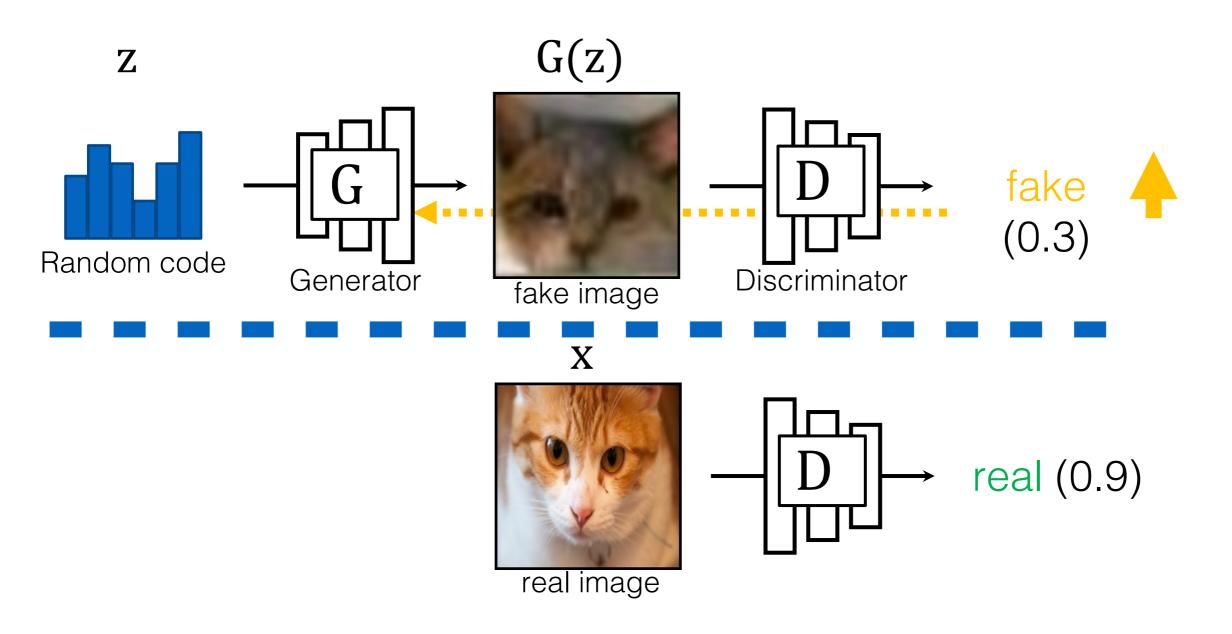
- G tries to generate fake images that can fool D.
- D tries to detect fake images.



$$\min_{G} \max_{D} \mathbb{E}_{z}[\log(1-D(G(z))]$$



$$\min_{G} \max_{D} \mathbb{E}_{z}[\log(1 - D(G(z))] + \mathbb{E}_{x}[\log D(x)]$$



$$\min_{G} \max_{D} \mathbb{E}_{z}[\log(1 - D(G(z))] + \mathbb{E}_{x}[\log D(x)]$$

GANs Training Breakdown

- From the discriminator D's perspective:
 - binary classification: real vs. fake.
 - Nothing special: similar to 1 vs. 7 or cat vs. dog

$$\max_{D} \mathbb{E}[\log(1-D(\square))] + \mathbb{E}[\log D(\square)]$$

GANs Training Breakdown

- From the discriminator D's perspective:
 - binary classification: real vs. fake.
 - Nothing special: similar to 1 vs. 7 or cat vs. dog

$$\max_{D} \mathbb{E}[\log(1 - D(\square))] + \mathbb{E}[\log D(\square)]$$

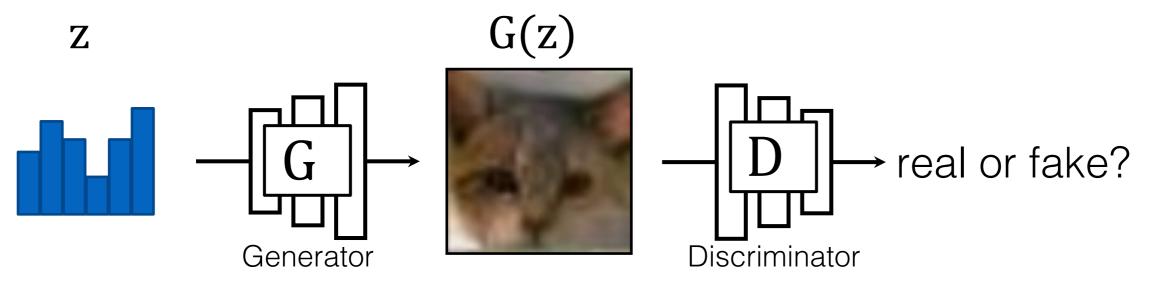
- From the generator G's perspective:
 - Optimizing a loss that depends on a classifier D
 - We have done it before (Perceptual Loss)

$$\min_{G} \mathbb{E}_{z}[\mathcal{L}_{D}(G(z))] \qquad \min_{G} \mathbb{E}_{(x,y)}||F(G(x)) - F(y)||$$

GAN loss for G

Perceptual Loss for G

GANs Training Breakdown



G tries to synthesize fake images that fool D

D tries to identify the fakes

- Training: iterate between training D and G with backprop.
- Global optimum when G reproduces data distribution.

 $p_g = p_{data}$ is the unique global minimizer of the GAN objective.

Proof

Optimal discriminator given fixed G

$$C(G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_G^*(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g} [\log (1 - D_G^*(\boldsymbol{x}))]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_g} \left[\log \frac{p_g(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_g(\boldsymbol{x})} \right]$$

$$C(G) = -\log(4) + KL\left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_g}{2} \right.\right) + KL\left(p_g \left\| \frac{p_{\text{data}} + p_g}{2} \right.\right)$$

$$C(G) = -\log(4) + 2 \cdot JSD\left(p_{\text{data}} \| p_g\right)$$

$$\geq 0, \quad 0 \iff p_g = p_{data} \quad \Box$$

KLD (Kullback-Leibler divergence): $\mathcal{KL}(p||q) = \int_{1}^{1} p(x) \log \frac{p(x)}{q(x)} dx$

JSD (Jensen–Shannon divergence): $\mathcal{JSD}(p \parallel q) = \frac{1}{2}\mathcal{KL}(p \parallel \frac{p+q}{2}) + \frac{1}{2}\mathcal{KL}(q \parallel \frac{p+q}{2})$

Generative Adversarial Network

Learner

Objective

 $\min_{G} \max_{D} \mathbb{E}_{z}[\log(1 - D(G(z))] + \mathbb{E}_{x}[\log D(x)]$

Hypothesis space Deep nets G and D

Data

Optimizer
Alternating SGD on G and D

Critic

 $D: \mathcal{X} \to [0,1]$

Sampler

 $G: \mathcal{Z} \to \mathcal{X}$

Generative Adversarial Network

Learner

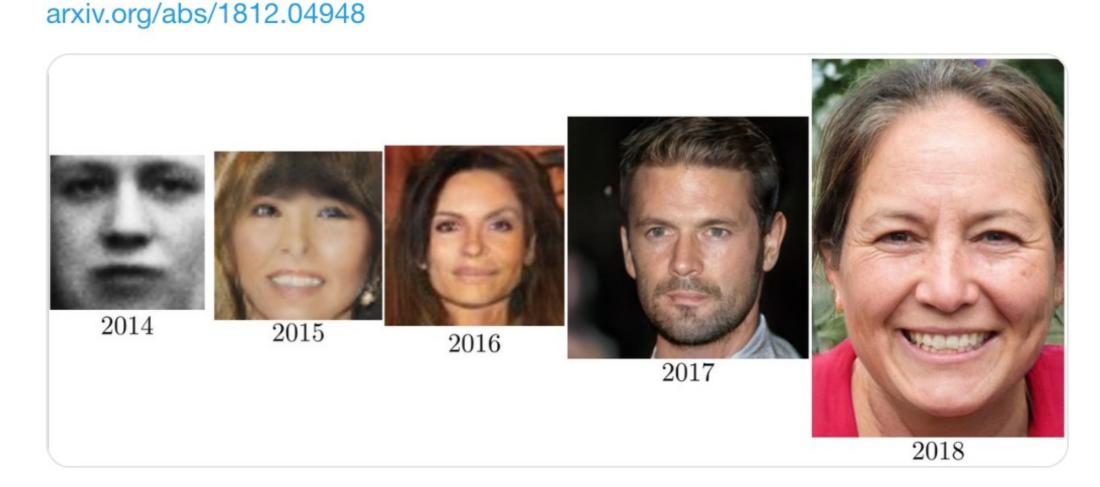
Objective $JSD\left(p_{\text{data}} \| p_g\right)$

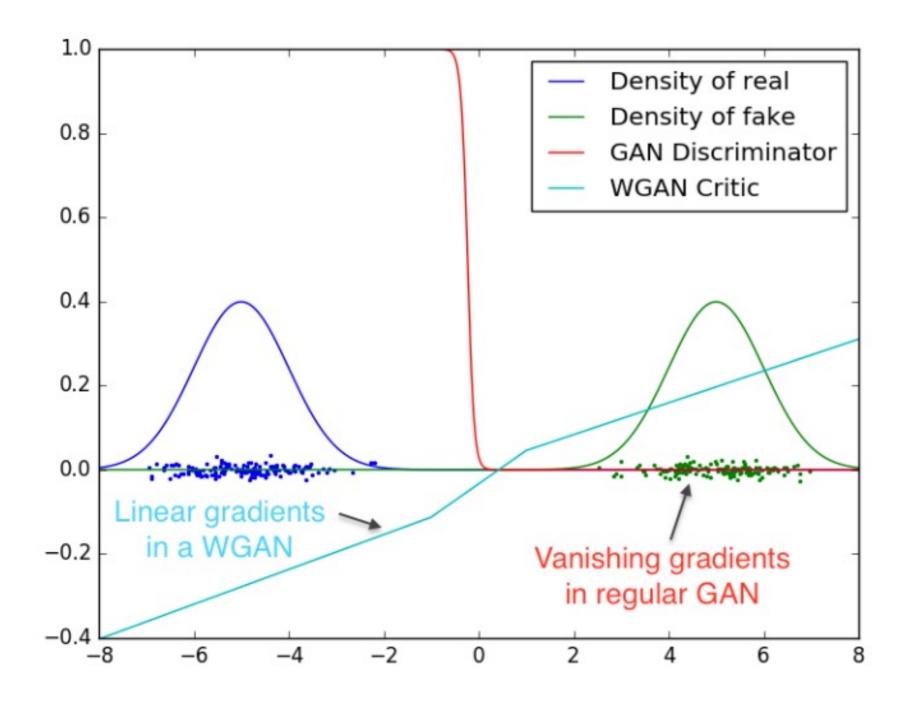
 $\begin{array}{c|c} \text{Data} & \rightarrow & \\ & \text{Hypothesis space} \\ & \text{Deep net G} \end{array}$

Optimizer Adversarial game $\longrightarrow G: \mathcal{Z} \to \mathcal{X}$

What has driven GAN progress?

Ian Goodfellow @goodfellow_ian · Jan 14
4.5 years of GAN progress on face generation. arxiv.org/abs/1406.2661
arxiv.org/abs/1511.06434 arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196

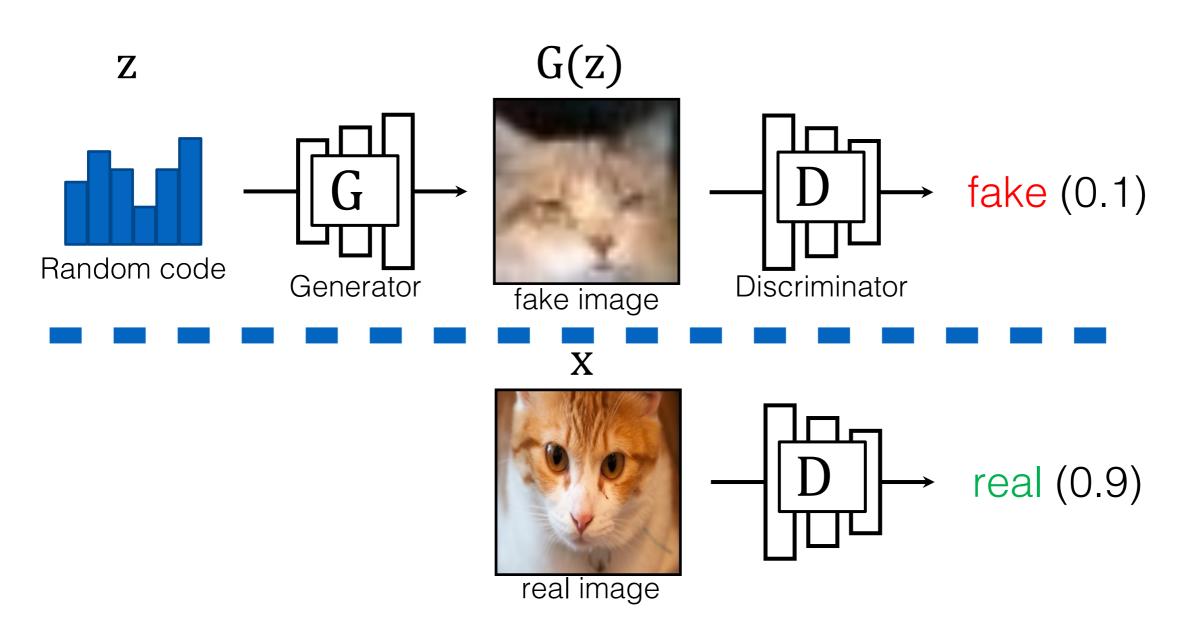




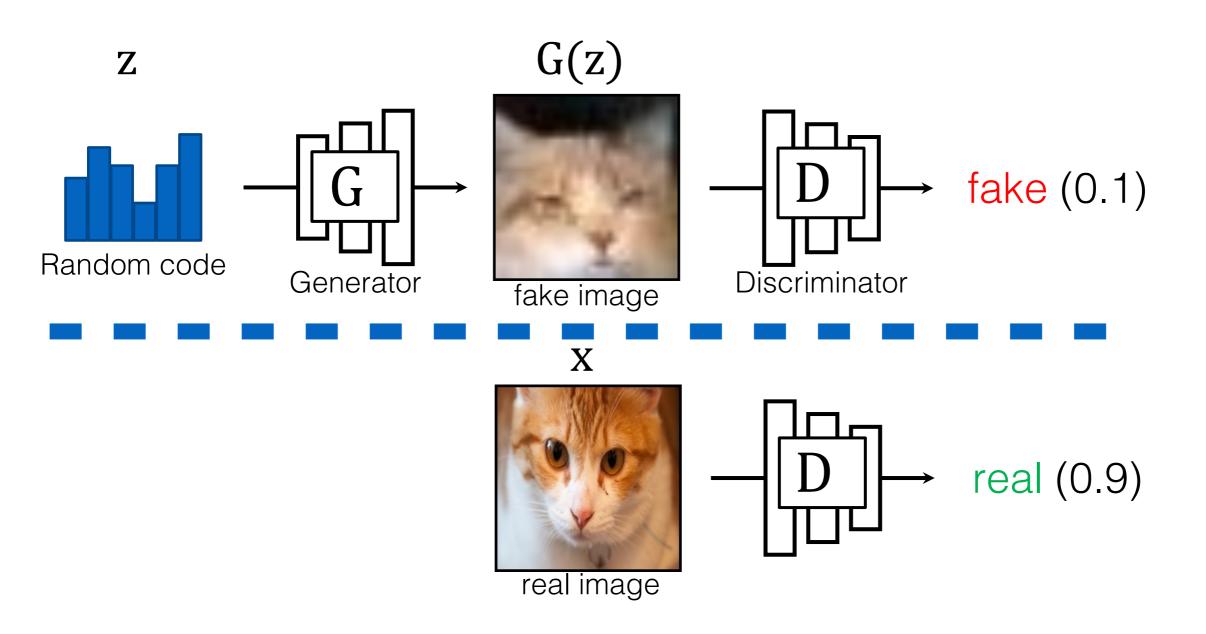
$$D_G^*(\boldsymbol{x}) = \frac{p_{data}(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}$$

$$\log D(G(\mathbf{z})) \longrightarrow -\infty$$

from [Arjovsky, Chintala, Bottou, 2017]



$$\min_{G} \max_{D} \mathbb{E}_{z}[\log(1 - D(G(z))] + \mathbb{E}_{x}[\log D(x)]$$

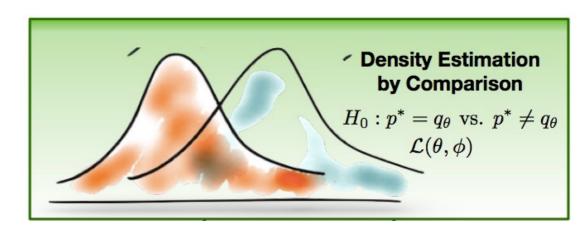


Learning objective (GANs variants)

$$\min_{G} \max_{f_1,f_2} \mathbb{E}_z[f_1(G(z))] + \mathbb{E}_x[f_2(x)]$$

EBGAN, WGAN, LSGAN, etc

Other divergences?



from [Mohamed & Lakshminarayanan 2017]

Convenient choice

$$\min_{G} \max_{f_1, f_2} \mathbb{E}_z[f_1(G(z))] + \mathbb{E}_x[f_2(x)] \quad f_1 = -f$$

$$f_2 = f$$

Different choices of f1 and f2 correspond to different divergence measures:

- Original GAN —> JSD
- Least-squares GAN —> Pearson chi-squared divergence

$$\min_{D} V_{\text{LSGAN}}(D) = \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} \left[(D(\boldsymbol{x}) - 1)^{2} \right] + \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{z}}$$

$$\min_{G} V_{\text{LSGAN}}(G) = \frac{1}{2} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \left[(D(G(\boldsymbol{z})) - 1)^{2} \right].$$

$$60$$

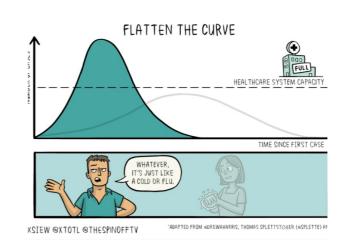
Other divergences?

$$KL(p_{\text{data}}||p_{\theta}) \leftarrow \mathbb{E}_{x \sim p_{\text{data}}}[\log p_{\theta}(x)]$$

$$KL(p_{\theta}||p_{\mathtt{data}})$$
 - Reverse KL — mode seeking, intractable

$$W(p_{\mathtt{data}}, p_{\theta}) = \inf_{\gamma \in \Pi(p_{\mathtt{data}}, p_{\theta})} \mathbb{E}_{(x,y) \sim \gamma}[\|x - y\|] \quad \longleftarrow \quad \mathsf{Wasserstein}$$

Earth-Mover (EM) distance / Wasserstein distance



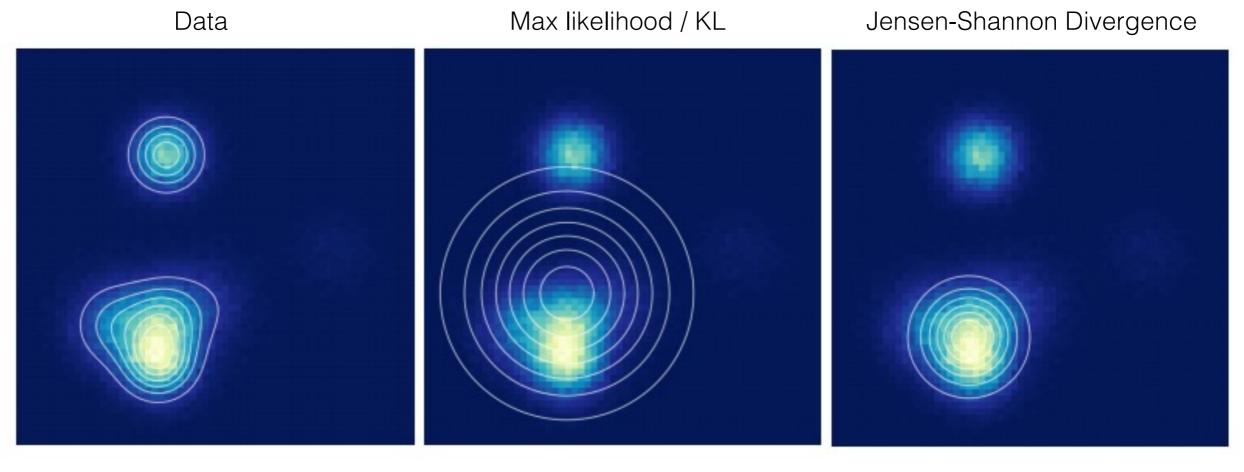
Maximum log likelihood, KL, and JSD

$$\begin{aligned} & \text{KLD (Kullback-Leibler divergence):} \quad \mathcal{KL}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx \\ & \text{JSD (Jensen-Shannon divergence):} \quad \mathcal{JSD}(p \parallel q) = \frac{1}{2} \mathcal{KL}(p \parallel \frac{p+q}{2}) + \frac{1}{2} \mathcal{KL}(q \parallel \frac{p+q}{2}) \\ & \mathbb{E}_{x \sim p_{\text{data}}(x)} \big[\log p_{\theta}(x) \big] = \int_{x} p_{\text{data}}(x) \log p_{\theta}(x) dx \\ & \mathcal{KL}(p_{\text{data}}(x) || p_{\theta}(x)) = \int_{x} p_{\text{data}}(x) \log \frac{p_{\text{data}}(x)}{p_{\theta}(x)} dx \\ & = \int_{x} p_{\text{data}}(x) \log p_{\text{data}}(x) dx - \int_{x} p_{\text{data}}(x) \log p_{\theta}(x) dx \\ & \mathbb{E}_{x \sim p_{\text{data}}(x)} \log p_{\text{data}}(x) \log p_{\text{data}}(x) \log p_{\theta}(x) dx \end{aligned}$$

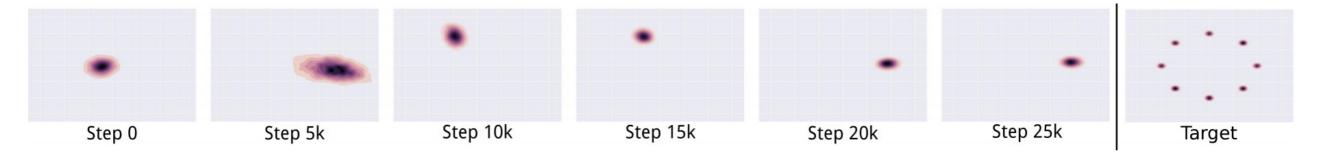
(independent of θ)

62

Maximum log likelihood/KL vs. JSD



[Theis et al. 2016]



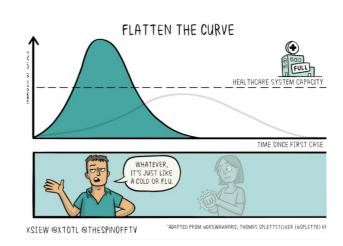
Other divergences?

$$KL(p_{\text{data}}||p_{\theta}) \leftarrow \mathbb{E}_{x \sim p_{\text{data}}}[\log p_{\theta}(x)]$$

$$KL(p_{\theta}||p_{\mathtt{data}})$$
 - Reverse KL — mode seeking, intractable

$$W(p_{\text{data}}, p_{\theta}) = \inf_{\gamma \in \Pi(p_{\text{data}}, p_{\theta})} \mathbb{E}_{(x,y) \sim \gamma}[\|x - y\|] \quad \longleftarrow \quad \text{Wasserstein}$$

Earth-Mover (EM) distance / Wasserstein distance



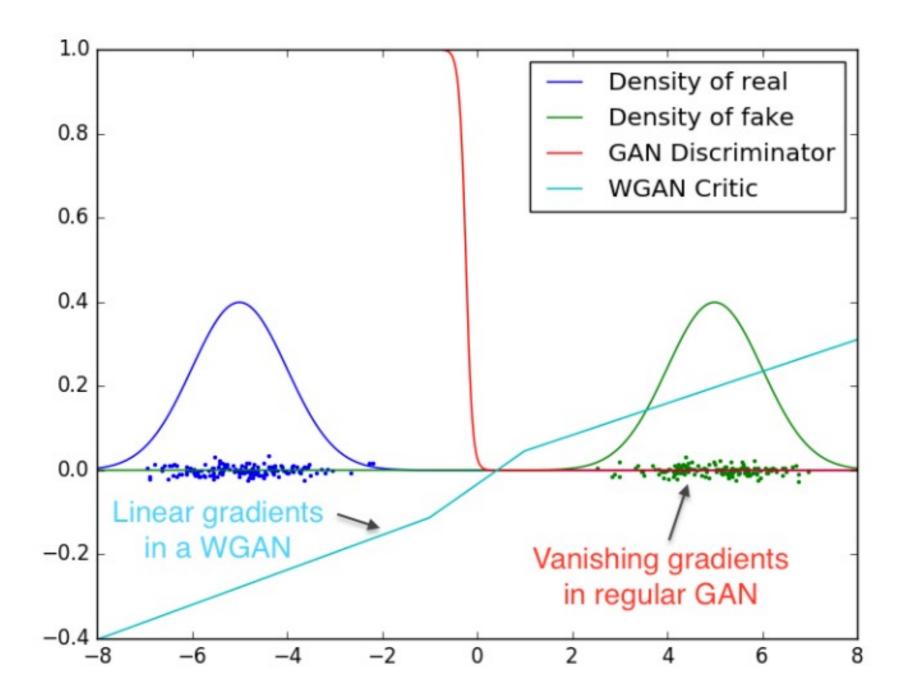
Wasserstein GAN

[Arjovsky, Chintala, Bottou 2017]

$$\arg\min_{G}\max_{\|f\|_{L}\leq 1}\mathbb{E}_{\mathbf{z},\mathbf{x}}\left[\begin{array}{c|c}-f(G(\mathbf{z}))&+&f(\mathbf{x})\end{array}\right]$$
 Lipschitz continuity
$$|f(x)-f(y)|\leq |x-y|W(p_{\mathtt{data}},p_{\theta})=\inf_{\gamma\in\Pi(p_{\mathtt{data}},p_{\theta})}\mathbb{E}_{(x,y)\sim\gamma}[\|x-y\|]$$

wGAN GP [Gulrajani et al., 2018]:

$$\arg\min_{G}\max_{f}\mathbb{E}_{\mathbf{z},\mathbf{x}}\left[-f(G(\mathbf{z})) + f(\mathbf{x})\right] + \lambda \mathbb{E}_{\hat{\mathbf{x}} \sim \mathbb{P}_{\hat{\mathbf{x}}}}\left[(\|\nabla_{\hat{\mathbf{x}}}f(\hat{\mathbf{x}})\|_{2} - 1)^{2}\right]\right]$$
Gradient penalty (GP)



from [Arjovsky, Chintala, Bottou, 2017]

To be continued...

Thank You!

16-726, Spring 2023

https://learning-image-synthesis.github.io/